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On the Analysis of Symmetrical Three-Line
Microstrip Circuits

VIJAI K. TRIPATHI, MEMBER, IEEE

Abstvac&—-The immittance parameters for the case of symmetri-
cal coupled three-line microstrip or other inhomogeneous six-port

structures are derived in terms of the normal modes of the coupled
system. The analytical results obtained reduce to the heretofore
known results when the line parameters are interrelated in a specified
manner, and should be useful in the study and accurate design of
three-line couplers and other microwave circuit elements.

I. INTRODUCTION,

M ULTIPLE coupled line structures in an inhomoge-

neous medium such as microstrip lines may be used

for applications as couplers [1], [2] and other multisection

circuit elements. Symmetrical three-line structures (Fig. 1)

have been analyzed for the homogeneous medium (TEM)

case [3]. Attempts have also been made to analyze the

inhomogeneous structures primarily for applications as

couplers by assuming a set of modes [1], [2] which, as shown

in this paper, for the three-line case are not generally the

normal uncoupled wave modes of the system and hence

cannot propagate independently. The general solutions for

normal mode propagation constants, eigenvectors, and

impedances, etc., are available in matrix form for the general

case of multiconductor systems, e.g., [4], [5]. However,

explicit solutions for the normal mode properties and

six-port circuit parameters for the symmetrical three-line

case in terms of the self- and mutual-line impedances

and admittances per unit length are desirable and conve-

nient to study and formulate design procedures for various

applications as couplers and other circuit elements. These

six-port circuit parameters are derived in this paper for the

general case of symmetrical coupled three-line systems, and

it is shown that the results obtained reduce to the known

results when the line parameters are interrelated in a

specified manner for the respective cases.

II. ANALYSIS OF SYMMETRICAL THREE-LINE STRUCTURES

The voltages and currents on the three lines are given by

the transmission line equations

d[V]
—= - [z] [q
dx

40=
— -[Y] [v]dx

(la)

(lb)
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Fig. 1. (a) Cross sectional view of the symmetrical three-line microstrip
structure. (b) Schematic of the coupled line six-port.

where, [V] and [Z] are the three-dimensional column vectors

and [z] and [y] are 3 x 3 impedance and admittance

matrices. For the symmetric case, these are given by

H
z~~ z~~ z~~

[z] = z,, z,, z,,

213 Z12 2-11

[1

Yll Y12 Y13

[Y] = Y12 Y22 Y12 . (2)

Y13 Y12 Yll

The voltages and currents for the case of uniformly coupled

lines considered here are then the solution of

d2[V]
~ + [z] [y] [v]= o

and

d2[I]
~ + [y] [z] [1] = o.

(3a)

(3b)
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The characteristic product matrices [z] [y] and [y] [z] are of

the form

[1

ABC

[z] [y]= D E D

CBA

(4a)

[Y1– Y2[~]l =Oleadto thepropagation consta,nts for
normal modes of the system and are given by

y~=A–C

A+C+E
y; =

2
+ l/2~(A + C – E)’ + 8DB

A+C+E
y: =

2–
l/2~(A + C – E)’ + 8DB.

the

(6)

The corresponding voltage and current eigenvector matrices

corresponding to these eigenvalues are given by

[
[Mv] = : R:l R:2

–1 1 1 1
and

[MI] =
[-: {11 ;21

(7)

where

R
2B ‘m% ‘8)

A+C– E
VI,’ = —

and

R
2

~1,2 . ——
R“V2,1

(9)

From (8) and (9) it is seen that

RVIRV2= –2;

Note that RVI,2 # RII,2 unless D = B. That is, in general,

the ratio of voltages on the lines is not equal to the ratio of

the currents for the normal modes of propagation and an a

priori assumption that Rvl, = R112 or [Mv] = [MI] for

symmetrical multiconductor systems does not generally

lead to the normal independent modes. The voltage and

current eigenvectors which give the ratio of voltages and

currents, respectively, on the three lines for the three normal

modes of propagation maybe used to find the characteristic

impedances and admittances of the three lines for the three

normal modes. From (la) and (lb), these are found to be

Zal = za3 =:11– ’13
Y.

Y. 11—— —.—= _
Yll –Y13 El K3

z~l = z~3 =
z~~ + z~~ + R1~zl~

yb

‘)’b 11— — —

yll +Y13 + Rv1Y12 – Ybl – Yb3

(Ila)

‘ (llb)

z = RIIZ22 + 2Z12 _ ‘Vl?b = >_
b2 ‘—

RIlyb – Rv1Y22 + ZY12 ‘b2

(llC)

Zcl = ZC3 =
Zll + Z13 + R12Z12

Y.

Y. 11—— — —

yll + Y13 + Rv2Y12 – ~1 – YC3

(lId)

where Zj~ and Yj~ (j = a,b,c, and k = 1,2,3) are the charac-

teristic impedance and admittance, respectively, of line k
for mode j. From (8)-(10), it is seen that the characteristic

immittances of the lines for the three normal modes are

related through

Y Y1 Zbz z’ RV1RV2
blc___=&=—

Y – E2 z,, Zc, 2“
(12)

,b’

The immittance matrix parameters of the coupled line six-

port (Fig. 1) are found in terms of these normal mode

characteristic immittances of the three lines, the mode

voltage and current ratios as given by (7)–(9), and the

propagation constants for the normal modes y.,b,Cas given

by (6). This is done in a straightforward manner, as for the

case of the coupled line four-port [6], by writing the

equations for voltages and currents for the six-ports in

terms of the normal modes of the system. That is,

[v] = [Cv] [A] where [Vl and [A] are six-dimensional

column vectors and [C v] is the 6 x 6 matrix representing the

relationship of the port voltages VI ~ to the amplitudes of
the forward and reflected waves A ~,, ~ for the three normal

modes. The port currents are also related to these amplitude

coefficients since for each mode j the current on line k is
related to the VOl@e by 1~ = Yjk ~k, i.e., [1] = [c,] [/4].
Eliminating the amplitude coefficients leads to the im-
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pedance and admittance matrices for the coupled line

six-port whose elements are

Zll = z~~ = z~~ = z6~

= *[% Coth Yal - (%2% Coth Ybl

– Rvl ZC1 coth yCl)/Rd]

= [Z,, coth y,l – ZC, coth yC1l/R,

z 13 = z~l = z&j =z6~

= –$[Zal coth y. 1 + (Rvz Zbl coth

– Rvl ZC1 coth y, l)/Rd]

z 14 = z~l = Z36 = z6~

= $[Z.l csch y.1 + (–Rv2Zbl csch

+ Rvl 2.1 csch yCl)/R~]

y~1

y~1

(13a)

(13b)

(13C)

(13d)

(13e)

(13f)

(13g)

(13h)

(14a)

(14b)

(14C)

(14d)

(14e)

(14f)

Y22 = Y~~

= [Rvl ~z coth ybl - Rv, ~, coth yCfl/R, (14g)

Y25= Y52

= – [Rvl ~, csch ybl – RV2 ~z csch yCl~/Rd (14h)

where R~ A (Rvl — RV2) and 1 is the length of the lines.

The above formulation may be used to study and evaluate

the properties of any symmetrical three-line system in terms

of the equivalent self- and mutual-series impedances and

shunt admittances per unit length of the lines. For the case of

lossless lines ya,b,, 1 = jfl.,b,C 1 and the hyperbolic functions

may be replaced by trigonometric functions, i.e.,

coth y~,b,,1 = ‘j cot 6~,b,C and csch ya,b,C1 = —j CSC o~,b,c,

where 6@,C = ~+ 1. 6.,@ the electrical length of the lines

for the three normal modes, are linearly dependent on

frequency for quasi-TEM case of coupled microstrip lines at

low frequencies. For this case, the results can then be

expressed in terms of the capacitance matrix for the struc-

ture and the capacitance matrix of the same structure with

dielectric removed.

The analytical results obtained above reduce to known

results for coupled two-line case [6], when one of the three

lines is removed, and to the known results for three-line

cases [2], [3] when the line parameters are interrelated in a

specified manner. For the case of the homogeneous medium,~-
the eigenvalues are degenerate and y.= yb = yC= jm w

leads to the results obtained by Yamamoto et al. [3] where a

convenient set of eigenvector matrices can be chosen to

study the coupled line six-port. For the inhomogeneous

medium Iossless quasi-TEM case, e.g., coupled microstrip

lines at low frequencies, the results obtained above reduce to

those obtained by Pavlidis and Hartnagel [2] iff D = B. It is

seen that for [Mv] = [MI] which is an implicit assumption in

the previous formulations, D = B for the three line case.

Then from (8)-(10)

RVI,2 = RII,2 Rvl RV2 = RII R12 = –2

Z~l = Zb2 and ZCI = ZC2 (15)

and the results obtained for characteristic impedances and

six-port parameters reduce to those obtained in [2],

provided the correct expression for R VI as given by (8) is
utilized. For this case, if the coupling between nonadjacent

lines is neglected (yls = ZI ~ = O), the condition D = B

requires that [from (5)]

z~~ Y12 (16)
z~~ — Z2Z Yll –Y22’

This condition is obviously satisfied when z ~~ = Zzz and

Y11 = Y2Z. F’or thiscase the solution for the propagation
constants, the mode voltage ratios and the characteristic

impedances as given by (6), (8), and(11 ) for the three normal

modes are found to be

Rvl = –Rv, = @ (17)

‘Ya=&ll Yll (18a)

yb = ~(ZII + @12)(h1 + x/3h2) (18b)

Y.= & – @12)(Yll – x/~Y12) (18c)
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Zal = za3 = Jzl Jyll (19a) mutual- impedances and admittances per unit length of the

Zbl = zb2 = z~~
lines. For the case of coupled microstrip lines, the results

= /(zll +@z12)/(Yll +@Y12)

obtained should be useful in the study and design of couplers

(19b) and other circuit elements. The theory applies to any

Zcl = zc~ = zc~
symmetrical coupled three-line dispersive, lossy, passive, or

=/(zll -@12)/(Yl, - /~Y12).

reciprocal-active system and may be used to study such

(19c) systems in terms of their equivalent self- and mutual-line
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Intermodulation Distortion Analysis of
Reflection-Type IMPATT Amplifiers

Using Volterra Series
Representation

ALAUDDIN JAVED, BARRY A. SYRETT, MEMBER, IEEE, AND PAUL A. GOUD, SEN1ORMEMBER, IEEE

Absfract—Intermodulation distortion generated in a stable
IMPATT amplifier is analyzed using Volterra series representation. An

IMPATT amplifier model, which takes into account the interaction
between the nonlinearities of the diode and its embedding circuitry, is
described. The Volterra transfer functions are derived for this modeL

Nonlinear terms up to and including the fifth order are considered.
Intermodulation distortion products are calculated for a low-level
input signal consisting of two tones. The results of this analysis are
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extrapolated into the direction of increasing outpnt power in order to
obtain the third-order intercept point. Further, closed form expres-

sions for the third-order intermodttlation IM3 and intercept point PI
are derived. The distortion of a specific 6-GHz IMPATT amplifier is
evaluated for illustrative purposes; the predicted distortion behavior

compares favorably with experimental results.

I. INTRODUCTION

M ICROWAVE oscillators and amplifiers using IMPATT

diodes are being utilized in areas such as telecom-
munications [1]. In many such applications, the inter-

modulation noise arising from IMPATT diode nonlinearities

becomes an important consideration. This paper investi-

gates the nonlinear distortion produced in an IMPATT

amplifier, using Volterra series as an analysis tool. The

Volterra series expansion allows a detailed and accurate


